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Particle migration and free-surface topography
in inclined plane flow of a suspension

By BRIAN D. TIMBERLAKE AND JEFFREY F. MORRIS†
School of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

(Received 7 April 2004 and in revised form 9 March 2005)

Gravity-driven free-surface flow of a suspension of neutrally buoyant particles down
an inclined plane channel of constant width has been studied experimentally and by
flow modelling. A uniform suspension of spheres, sieved to radii of a =53–125 µm or
125–150 µm, was introduced to create films of initial depth ho. The flow was always at
small film-depth-based Reynolds numbers. The film depth and the mixture flow profile
were measured at the initial and two locations at least 200ho and 400ho downstream.
The bulk particle volume fraction, φB, was varied in the range 0.01 � φB � 0.5;
ho ≈ 1.8–3.2 mm and the inclination angle relative to horizontal, 0.1◦ <α � 90◦, were
also varied. Analysis of the particle velocity was performed by stereoscopic imaging
to determine particle location followed by particle correlation velocimetry. A two-
layer Newtonian viscosity model was applied to the velocimetry results in order to
infer particle concentration information. Measured velocity profiles and film depth
show that film thickness decreases from ho, while the velocity gradient at the wall
and the mean velocity increase, as the mixture flows down the plane. The free
surface, examined using direct imaging, becomes progressively more deformed as α

and φB increase, with the onset of observable deformation found at a particle-scale
capillary number of Cap ∼ ρgxa

2/σ =O(10−4); ρ is the mixture density, gx = g sin α

is the axial component of gravitational acceleration and σ is the surface tension of
the suspending liquid. An existing model for suspension flow which describes phase
migration as driven by normal stresses caused by the suspended particles is used to
predict the flow, with satisfactory agreement for film depth and development distance
for the non-uniform local solid volume fraction, φ. The agreement with the detailed
φ profile is less good, as the model fails to predict the observed φ ≈ 0 near the solid
boundary while φ is overpredicted adjacent to the free surface.

1. Introduction
Free-surface suspension flow appears in diverse contexts including mud flows and

bioreactors. This work addresses free-surface film flow of suspensions, with the termi-
nology of film implying a relatively thin layer of suspension. The flow is relevant
to processes such as blade coating (Pranckh & Scriven 1990), as it is found in
coating with suspensions that the interactions of particles with the surface may affect
gloss in paint coatings (Lepoutre & Lord 1990). While the eventual dry film is the
quantity of technological interest, the distribution of suspended particles under viscous
flow conditions is well-known to be strongly affected by spatially varying shear flow.
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Coating flows involving suspensions have, however, received little attention addressing
specifically the role particles play in establishing the bulk flow and the form of the
surface. The latter issue has been demonstrated to have relevance in recent work by
Loimer, Nir & Semiat (2002) illustrating that shear-induced motions of the particles
can result in marked deformation of a suspension–air interface. This behaviour
reflects particle interactions in the bulk and has no obvious counterpart in pure liquid
interfaces. To examine the phenomena involved in a suspension flow with a free
surface, we have considered the relatively simple gravity-driven flow down an inclined
plane. The goals of the work were to determine for this axially evolving mixture flow
the velocity and solids distribution over a range of conditions, as well as to determine
the form of the free surface. This work presents both experimental results for this
problem and flow modelling employed to aid in their interpretation.

Based upon the similarity of gravity-driven film flow and pressure-driven channel
flow, where in the latter a suspension exhibits pronounced particle migration (Koh,
Hookham & Leal 1994; Lyon & Leal 1998), migration is expected to play a role in
this free-surface flow. A number of suspension flows exhibiting migration have been
investigated. Leighton & Acrivos (1987), and later Abbott et al. (1991) have shown
experimentally that particles will migrate away from regions of high shear to regions
of low shear in a viscometric Couette flow of a suspension. Direct observation of
the velocity and concentration profile of pressure-driven flow of a suspension in a
rectangular channel has been performed using a modified laser-Doppler velocimetry
(LDV) method by Shauly et al. (1997) (see also Averbakh et al. 1997) and by Lyon &
Leal (1998). The flows considered in these studies approximated two-dimensional
flows across the narrow gap. Particle migration was away from the walls and toward
the centre of the channel, leading to the expectation in a gravity-driven film flow
of a suspension that neutrally buoyant particles will accumulate adjacent to the free
surface.

This expectation does not, however, account for factors arising from the free
surface. The most obvious neglected point is that in a free-surface flow, deformation
of the interface introduces capillary forces, a type absent in a pressure-driven channel
flow. A related point is that the freedom of the interface shape introduces degrees
of freedom in the system dynamics, and these have been shown in other geometries,
namely a partially filled circular Couette device and a single partially filled rotating
cylinder, to be associated with remarkably strong segregation of the particles into
concentrated and dilute (or particle-free) bands along the direction perpendicular to
the flow. In these flows with rotation about the axis of symmetry, banding is along
the axis, and was observed to occur in low-Reynolds-number flow in the partially
filled Couette (Tirumkudulu, Tripathi & Acrivos 1999; Timberlake & Morris 2002,
2003) and rimming flow inside a partially filled rotating cylinder (Boote & Thomas
1999; Tirumkudulu, Mileo & Acrivos 2000). These flows involve a free-surface film of
suspension flowing due to both device rotation and gravity. The finding of instability
of the uniformly mixed state in such flows provides further motivation for examination
of suspension flows in free-surface geometries, although it should be noted that no
such phenomena are seen in the flow studied here.

The observation of Loimer et al. (2002) that the interface with normal in the
vorticity direction in a simple-shear flow is strongly deformed suggests that significant
stresses drive particle interactions with the free surface. Our investigation considers
suspension flow under conditions in which the normal stresses in the suspension are
expected to play a role not only at the air–suspension interface, but also in the
bulk through particle migration-induced non-uniformity in the solid fraction. Because
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capillary normal forces resist the protrusion of particles into the interface driven by
bulk shear-induced normal forces, the internal dynamics and surface deformation
provide dual demonstrations of the influence of particle normal stresses. This has
previously been considered at the bulk scale in work by Zarraga, Hill & Leighton
(2000), who addressed the influence of suspended particles upon the bulk normal-
stress-induced deformation of the interface in a wide-gap rotating rod geometry.
Our consideration of the film flowing down a plane is a rather different geometry,
and the vanishing of the average shear rate at the interface in the flow studied
here may lead to the expectation that the surface will be unperturbed by the solids.
However, this is not the case, as results presented in § 3.2 show that small-scale surface
deformation about the mean flat film is observable when a capillary number defined
Cap = 2ρgxa

2/σ > 10−4, with ρgx the axial driving force due to gravity, a the particle
radius, and σ the coefficient of surface tension.

The expectations of particle migration toward the free surface of gravity-driven film
flow are derived not only from experiment, but also from a body of work modelling
the bulk flow of suspensions. Leighton & Acrivos (1987) proposed a phenomenological
model for shear-induced particle flux along gradients in shear, which was developed
by Phillips et al. (1992) and shown to provide a satisfactory description for a number
of flows. Nott & Brady (1994) as well as Morris & Brady (1998) applied a two-fluid
type of analysis to show that spatial variation of the suspension normal stresses should
play a role in the migration. This framework was further developed by Morris &
Boulay (1999), who showed that a consideration of the normal stress differences
could account for migration in torsional viscometric flows, and the rheological model
proposed in this latter study is employed, in the manner described in § 5, for numerical
analysis of axial evolution in the film flow.

Previously only a few results from simulation studies of the behaviour of isolated
particles or suspensions in film flow with a deformable interface have appeared. Li &
Pozrikidis (2002, 2003) have used boundary integral techniques to simulate drops and
particles, respectively, in two-dimensional gravity-driven film flow (the particles thus
being deformable or rigid disks) down an inclined plane. The results presented by
these authors for suspensions of solid particles are limited, but the liquid drops were
found to migrate to the centre of the film, i.e. away from both the solid and the free
surface. This behaviour differs from the findings for drops in pressure-driven channel
flow by Li & Pozrikidis (2000), providing direct (albeit numerical) evidence that the
capillary forces from the film interface can have effects upon the phase distribution
in mixture film flows.

In order to study the internal bulk dynamics of free-surface flow of a suspension,
we use a stereoscopic particle imaging technique. We use direct surface imaging of
reflected light to determine the surface topography under various conditions, with
power spectral analysis of the images as a characterization tool. The experiments
are outlined in the following section. Experimental results are presented for the
particle velocimetry and surface reflection studies in § 3. The rheological modelling
and predictions of the flow are presented with comparison to experimental results in
§ 4.

2. Experiments
2.1. Suspensions and apparatus

The suspending fluid used was a mixture of 76 % Triton X-100 (t-Octylphenoxy-
polyethoxy-ethanol, a surfactant produced by Sigma), 16.2 % zinc chloride (ZnCl2),
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and 7.8 % water, with the percentages based on mass. This mixture was density-
matched (ρ = 1.180 g cm−3) and roughly refractive index (RI)-matched to the
poly-(methyl methacrylate) (PMMA; Elvacite Company) particles (RI = 1.491 at
T = 20 ◦C). The suspending liquid viscosity had temperature dependence described
by η0 = 9.13 exp[−0.12(T − 22)] Pa s, with T in degrees Celsius, based on viscosities
at T = 22 ◦C–28 ◦C (the range in the laboratory over the period of velocimetry
experiments was T = 22 ◦C–29 ◦C) as measured on a Haake RS600 rheometer. The
surface tension of the suspending fluid was 33.5 dyn cm−1 at 23 ◦C, measured with a
Fisher Surface Tensiometer Model 21.

Suspensions were mixed by first adding the Triton X-100 to the particles and
allowing the resulting air bubbles to rise out of the mixture. The ZnCl2 was dissolved
in water and the solution was added to the particles and Triton X-100. The suspension
was mixed and allowed to cool; cooling was needed as there is apparently a significant
heat of mixing for ZnCl2 and water as well as for aqueous ZnCl2 and Triton X-100.

The PMMA particles used in the velocimetry experiments, described in § 2.2,
were spherical and sieved to radii in the range a = 125–150 µm, and heat treated
as described below. The free-surface characterization experiments, described in § 2.3,
used PMMA particles sieved to a radius range of 53–125 µm; these particles were
not heat treated. The use of different particle sizes was for convenience, as there was
a smaller fraction of the larger particles available; an added benefit was that the
smaller particles allowed for a thinner film at a given ratio of film depth to particle
size, and hence longer flow times (recall velocity scales with the depth squared) before
end effects became significant in the short channel used for surface imaging studies.
A limited number of the free-surface characterization experiments were performed
using PMMA spheres of mean diameter 9.9 µm and standard deviation of 1.4 µm
(Bangs Laboratories), reported below as of mean radius ā = 5.0 µm.

Particles for use in the velocimetry study described in § 2.2 must have constant
refractive index within the particle, with this refractive index closely matched to the
suspending fluid. Improvement of refractive index matching was obtained by the
following procedure. Particles were placed for 15 minutes in an oil bath well-mixed
by rapid magnetic stirring and heated to 130 ◦C, and then quenched with dry ice to
−78 ◦C. The glass transition temperature of PMMA is 125 ◦C (Watson 1996). The
particles were then resieved, a step needed to remove any which might have become
fused. This process greatly improves the clarity of the PMMA particles, allowing
visualization through the full depth of a 3mm film at φB =0.4.

Tracer particles required for the velocimetry technique used here were made from
a fraction of the PMMA particles forming the suspension. This fraction was dyed in
a hot water bath. Several grams of PMMA particles were placed in a bath consisting
of water and black RIT liquid dye. The bath was kept well-mixed while being heated
until boiling. The particles were kept under these conditions for approximately two
hours to allow diffusion of dye into their surfaces. The mixture was then poured
through a sieve to separate the particles from the bath. While the particles were on
the sieve, they were washed by flooding with cool water to remove excess dye. Finally
the dyed particles were sieved once again to remove fused particles.

Two inclined channels, both constructed from Lexan and 4.4 cm wide but differing
in length, were used; one was 183 cm long and the other was 61 cm long. The longer
channel was used to examine axial evolution by a velocimetry technique described
in § 2.2 and characterization of the free surface as described in § 2.3; the shorter
channel was used only for experiments in which the free-surface deformation was
studied.
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Figure 1. Schematics of camera and lighting positions for (a) stereoscopic particle imaging
velocimetry, and (b) free-surface imaging. In (a) the flow is normal to the plane of the page in
each case.

Digital imaging was used in all experiments described. The cameras used were
Ultrak model KC7500CN with Navitar Zoom 7000 Macro Zoom 18–108 mm F/2.5
lenses. Camera positionings used are schematically illustrated in figure 1. Images were
captured and sent to computer memory by an IMASYS Falcon Quattro capture card,
which is capable of taking images from four NTSC input lines simultaneously. Each
image was marked with a time stamp when taken, accurate to one millisecond. For
stereoscopic particle positioning, a pair of images is needed at each imaging time;
pairs with time stamps differing by greater than 1 ms were discarded, while the time
between pairs was 0.5 s or greater. Further details follow below, but it may be helpful
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to note that, while this time between images is large relative to many applications, it
is appropriate to the system of interest, which has maximum (free-surface) velocities
of approximately 0.5–3 mm s−1 (see figures 3 and 5, as well as table 1) and a field of
view of 2–3 cm on a side.

2.2. Particle velocimetry

Stereoscopic particle imaging coupled with a correlation of images at different times
has been used to determine the particle velocity within the film. This method is similar
to a technique used by Breedveld et al. (1998) to determine the self-diffusion of tracer
particles within a concentrated suspension in shear flow, and our methodology is
here termed ‘stereoscopic particle correlation velocimetry’, shortened in most cases
below to PCV or particle velocimetry. Note that this method differs significantly from
stereoscopic ‘particle image velocimetry’ (PIV) in which particles seed the flow and
full-field images at adjacent instants in time are correlated without identification of
the particles to obtain full-field velocity information, inclusive of the out-of-plane
velocity (Prasad 2000). The well-established PIV technique typically relies on the
particles being passive tracers, i.e. having negligible dynamical influence on the flow,
and homogeneous seeding (Westerweel 1997). The PCV method used here is designed
specifically for the mixture flow, and thus employs tracers which are dynamically
identical to the remainder of the suspended particles. Each image contains only
relatively few tracers, up to about ten in the typical field of view of 2–3 cm on a side,
and it should be recalled that these are distributed across the depth of field (here
the entire film depth of 2–3 mm). As a consequence, the method relies on averaging
over many images (typically two images per second for about two hours), and does
not capture the instantaneous full-field velocity. We are thus not able to report on
three-dimensional flow structures or particle clustering. Instead, we consider the mean
particle velocity field within the film.

The stereoscopic PCV method consists of three basic steps. First, individual dyed
tracer particles are identified in stereoscopic images. Second, their location in a three-
dimensional coordinate system is determined by analysis of the image pairs. Third,
once all particle positions are known, a correlation between particle positions is made
between a given time and the subsequent times, up to a 2 s separation (for the initial
set of positions at t =0, correlation with the positions found at 0.5 s, 1 s, 1.5 s, and 2 s)
to determine particle velocity as a function of location in the flow; since a particle
may not always be identified, correlation with more than a single subsequent time
provides a substantial improvement in the quality of the data. The treatment of all
data from an experiment consists of performing the first and second steps on all
image pairs to obtain a set of particle locations for each imaging instant, followed by
application of the correlation to all images to obtain the velocity data.

2.2.1. Particle identification

Particles are identified in the images by first using background subtraction to remove
gradients in intensity due to the lighting. Thresholding of the intensity produces a
‘binary’ image where particles appear black and the background is white. Each group
of black points is analysed by an automated computational method to determine if the
group represents a spherical particle, implying determination of sufficient circularity
in the image. The analysis is based upon constructing ratios of the second, third and
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where the first equality for each moment is for general shape and the two further
equalities are specific to a circle. Here, R is the circle radius and the coordinate system
has its origin at the center of mass of the object. Two radius-independent measures
are constructed for each object as
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and again the final equality applies to a circle. If either of the mi obtained for an
object differed significantly from its value for a circle, the object was discarded; in
practice, the criterion for this decision was made such that if two spherical particles,
of the same size as the particles observed in practice, overlapped by less than 50 % of
their projected area, the combined observed object would not be considered a particle
and would be discarded. This translates into a 5 % change in m1 and a 7.5 % change
in m2.

2.2.2. Stereoscopic particle positioning

Stereoscopic positioning relies on the fact that the position of an object in space
can be determined by observing the object from two different positions. From each
camera position, the vector to the object is first determined, and the position of the
object in three-dimensional space is given by the intersection of these two vectors.
To obtain the necessary information, two cameras were located approximately 45 cm
from the inclined plane such that the angles of incidence on the plane of their views
were separated by approximately 10◦. The distance between the cameras was between
6 and 7 cm; the precise distance is not critical, as the direction is determined separately
as described below. The camera positioning relative to the inclined plane is illustrated
by the schematic in figure 1(a).

The coordinate system in three dimensions is defined by placing an ‘optical standard’
into the field of view. The optical standard consists of a precision-machined block of
aluminium with original dimension 3.5 cm × 2.5 cm × 1.0 cm; one face of this block
was further machined to provide five square posts of 400 ± 2 µm on a side. One
of the five posts is reduced in height by 2.54 mm (0.100 in.) from the others, which
are not reduced in this dimension from the as-received block. In use, the standard
is placed with the four long posts in contact with the solid surface of the inclined
plane. An image of the face of the optical standard can be seen in figure 2. The
posts provide three identifiable points which lie in a plane, against the inclined plane
(the fourth of these is not needed), and one identifiable point which lies out of this
plane. Designating one of the points as the origin, the positions of all of these points
in three-space designated by (x, y, z) are defined, and are noted along with their
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Figure 2. Optical standard: the dark squares are the end of the posts of the standard and
white dots on these are positions of critical features used in defining the transformation from
image space to physical space. These positions are labelled in pixels (V,W ) (upper text) and
three-dimensional physical position (x, y, z) referenced to the uppermost identified point in
the picture (lower text).

pixel location (V, W ) in the figure. Knowledge of these four positions on the optical
standard allows us to define a transformation from a point in an image to a position
vector in three-dimensional physical space, i.e. T : (V, W ) → (x, y, z). The details of the
development of the transformation are provided in the Appendix.

In the analysis, the assumption is made that all vectors from the camera to the
measurement volume are parallel to the focal axis, and this is validated experimentally.
The optical standard was first used to define the transformation from image to physical
space. The optical standard was then moved a known distance and the locations of
the features were calculated and compared to their actual positions. The distances
of interest are of the order of the film thickness, typically ho = 2–3 mm, and when
the optical standard was moved 2 mm with a micrometer driven linear translator
(MVN-80; Newport) in both the vertical and horizontal directions, the error in the
position of the features was less than 40 µm in each of the three directions, with the
largest error in the vertical.

2.2.3. Correlation velocimetry

Particle velocities are determined by first finding the vector between each particle
at time t and each particle at time t + �t , (�x)ij = xj (t + �t) − xi(t) for i and j

labelling all particles at t and t + �t , respectively; recall that �t = 0.5–2 s. Velocities
are determined as v = (�x)ij /�t . Each velocity is assigned to the position at the
mid-point between the two particle positions used to create it. The v are assigned to
bins according to distance from the solid surface, z, and then are further classified
into bins according to magnitude in the x-, y-, and z-directions. We assume that there
is no correlation between a given particle at time t and a particle at time t +�t which
lies upstream (at smaller x), so that the distribution of negative x-directed velocities
represents part of the expected uncorrelated distribution of velocities associated with
unlike particles for a given position box. The number of velocities which lie in each
velocity box is totalled and the number found with a negative vx is subtracted from
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Figure 3. Velocimetry data. (a) Raw velocity frequency data for tracer particles (φB = 0.005)
for the box centred 2.6mm above the solid surface of the inclined plane where ho = 3.2 mm
and α = 33.5◦. Gaussian fit of correlated velocity frequency data for (b) tracer particles
(φB = 0.005) for the velocity box centred 2.6mm above the solid surface of the inclined plane
where ho = 3.2 mm and α = 33.5◦ and (c) φB = 0.3, α = 60.8◦, ho = 2.72mm, and x =15 cm for
the velocity box centred 1.4mm above the solid surface of the inclined plane.

the number in the box with the corresponding positive vx of the same magnitude.
This process leaves only the correlated velocity information. Only positive velocities
were retained from this operation, with the result that the noise seen in figure 3 is
strictly positive, but this is not found to affect the desired information, i.e. the value
of velocity occurring with greatest frequency.

The raw velocity data for the tracer study at z = 2.6 mm can be seen in figure 3(a)
and the correlated data for this same location is shown in figure 3(b). A best fit
Gaussian curve is determined for the velocity data for the bin at each distance above
the solid surface, as illustrated in figure 3(b), with the velocity taken as the mean of
the Gaussian. The procedure was found to apply well to concentrated suspensions, up
to φB = 0.4, with a qualitatively similar fit to that found for the tracer in figure 3(b)
seen in the φB =0.3 data in figure 3(c).
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Figure 4. Concentration profiles from direct counting of particles in (a) a tracer
experiment (φB = 2 × 10−4, 2a = 250 µm, ho = 2.8 mm, α = 33.5◦) and (b) φB = 0.3, 2a = 250 µm,
ho = 1.8 mm, α = 60.8◦. Here φ3Phase represents the particle fraction in the full system which
consists of liquid, gas, and particles. This arises because of the unknown instantaneous location
of the free surface.

The local particle fraction profile φ(z) is also of interest. While in principle accessible
using the image data used for the particle correlation velocimetry (PCV), particle
fraction was only reliably determined from the detected particle positions for dilute
conditions. Recall that images were taken through the solid surface. Although we were
able to visualize through the entire film, we found that the probability of detecting
a dyed particle near the solid surface was greater than the probability closer to the
free surface. If the probabilities were equal, φ(z) could be determined as proportional
to the number of particles counted within a volume. The results from a tracer study
at φB =2 × 10−4, shown in figure 4(a), along with the results from an experiment
done with φB = 0.3, shown in figure 4(b), indicate a detection bias depending on
the distance of the particle from the lower boundary of the film. The concentration
profile for φB = 0.3 is, in fact, inconsistent with the velocity data taken for those
experiments, as the shear rates found from the velocity profile do not agree with
the effective viscosities implied by the particle concentrations shown in figure 4(b).
The velocity data are not subject to the same detection bias as the concentration,
as equal probability of detecting a particle at the different positions is not required.
It is most likely that the failure of the method for determining the detailed particle
fraction is due to insufficiently close matching of the refractive indices of particles and
fluid.

Rather than using direct particle position sampling to assess the particle concen-
tration, we resorted to treating the flow as consisting of two layers with different
Newtonian viscosities. The choice of only two layers is described below. Fitting of the
experimentally determined velocities to a two-layer model provides indirect informa-
tion on particle concentration inhomogeneity when combined with an empirical
relation between φ and effective viscosity; the specific viscosity model used in treating
the data is given in § 3. This two-layer model yields a three-parameter model of the
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Figure 5. Velocities determined experimentally and the two-layer Newtonian viscosity model
fit for φB = 0.3, α = 60.8◦, ho = 3.21mm, and x =137 cm. The model parameters are ηs1
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= 25.8 Pa s, and β =0.82.
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(2.3)

where gx = g sin α. The parameters of the model are the viscosities (ηsi
) of the fluid

layers as well as the location of the boundary between the two distinct layers, βh.
The variable β is confined to the interval between 0 and 1, and represents the fraction
of the film at the measurement position made up of the layer of viscosity ηs2

next
to the free surface. The model fit to measured velocity data is made by minimizing
the squared error between the model velocity and the actual velocity data using a
Nelder–Mead simplex method (Nelder & Mead 1965). A typical two-layer Newtonian
viscosity fit is shown in figure 5. Uncertainty in the location of the separation between
the two layers within this model is ultimately related to positioning error of particles in
z, which is greater than the absolute precision of the measurement location technique,
previously noted to be good to about 40 µm. The location uncertainty is due to the
fact that association of a given particle with the wrong bin results in a shift by the bin
size in its position used in the data treatment. Since only a fraction less than one-half
of the particles associated with a bin are expected to be subject to this uncertainty, we
estimate an upper bound on the uncertainty in the location of the division between
layers to be one-half of the bin size, i.e. about δz/2 = 200 µm. This corresponds to an
uncertainty in the dimensionless β of δz/2h, and this is reported in table 1, below.

From the implied viscosity and the relationship between particle fraction and
effective viscosity, ηs(φ), we determine the implied particle fraction in each layer. The
suspending liquid viscosity is determined for each experiment by fitting a one-viscosity
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model to the velocity profile taken nearest the start of the channel, assuming φ is
uniform at the bulk concentration across the film. The assumptions are apparently
justified: table 1 shows that the viscosities from the two-viscosity fit for the pure
fluid (experiment 1) are almost identical to those of the one-viscosity fit, while the
two viscosities for the suspension at the earliest measuring location, x = 15 cm, were
found to be relatively close in value, 8.0 and 8.1 Pa s. The pure fluid viscosity is
determined in this manner because of its sensitivity to temperature, which varied
from one experiment to another. The depth of the film at x = 15 cm is taken as ho,
although some of the early evolution has presumably taken place by this point.

While it is tempting to represent the flow as more than two Newtonian liquid layers,
there is insufficient velocity data to warrant this. Typically, our velocity profiles are
made up of 5 to 9 data points, and a three-viscosity model requires five model
parameters. A fit with five parameters with only five data points introduces excessive
sensitivity, where small changes in the measured data produce large changes in the
predicted values. Given this lack of velocity data, the most we can safely extract from
a model of this type is two viscosities, along with the location where the effective
viscosity changes.

2.3. Free-surface characterization

In order to characterize the deformation in the free surface of inclined-plane flow, a
series of images is taken of the reflection of light from the free surface. A camera is
placed above the free surface such that its focal axis creates an angle of approximately
70◦ from the film (or 20◦ from the mean surface normal, 〈n〉 ≈ ez where ez is the
unit vector in z), as shown in figure 1(b). Lighting is by a 300 W white light bulb
without diffuser, providing an approximate point source with the light reflected from
the undisturbed flat interface reaching the centre of the frame of the camera. If
the surface is deformed such that the local surface normal, n(x, y), is in a direction
sufficiently different from the mean normal, light is reflected away from the camera
producing a dark region in the image.

The series of intensity images was subjected to Fourier analysis to obtain length
scale information about the free surface. Both one- and two-dimensional transforms
were considered, and the power spectral density (PSD) determined for each.

One-dimensional PSDs were constructed in both the flow and spanwise directions.
The one-dimensional PSD is obtained by first dividing each image into individual
data sets. Each row of pixels in each image was treated as an individual data set for
determining the mean PSD in the spanwise direction and each column of pixels is
treated as an individual data set for determining the mean PSD in the flow direction.

The first step in determining the PSD of an individual data set is to take the fast
Fourier transform (FFT) of the image intensity data (essentially brightness) with the
mean intensity subtracted. The power contained within each wavenumber band for
the specific data set is then determined from these Fourier coefficients. The normalized
power is defined as

P (k) =
M(k)M(k)∗

maxN
b=1{M(b)M(b)∗} , (2.4)

where M(k) is the vector of Fourier coefficients and ∗ denotes the complex conjugate.
The mean PSD in the spanwise direction is simply the mean of the spanwise PSDs
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determined for all data sets in the series

P (k) =
1

S

S∑
b=1

Pb(k) (2.5)

where P is the mean PSD, and S is the number of data sets in all images. The same
process is used to determine the mean PSD in the flow direction. This method is
similar to one of the methods used in Loimer et al. (2002), although we have used
the full field of the image rather than a narrow band from the image.

A two-dimensional Fourier analysis was also considered. The first step in this
process is to take the two-dimensional FFT of the raw image, again after subtracting
the mean intensity. A two-dimensional PSD is constructed for each image in the
series, with normalization by the largest power,

P (j, k) =
M(j, k)M(j, k)∗

maxN1,N2

b=1,c=1{M(b, c)M(b, c)∗}
, (2.6)

where M(j, k) is the array of Fourier coefficients, N1 is the number of pixel rows, and
N2 is the number of pixel columns. The reported result for a given experiment is the
mean of the two-dimensional PSDs over all images,

P (j, k) =
1

S

S∑
b=1

Pb(j, k). (2.7)

Here S represents the number of individual images in the series.

3. Experimental results
The specific aims of this work were to measure the flow of a non-colloidal suspension

in free-surface film flow in Stokes flow, and to determine the form of the free surface
under such flow conditions. Neglect of inertia is justified as the film Reynolds number
satisfied

Ref =
ρumaxho

ηso

∼ ρ2gxh
3
o

η2
so

< 0.01

for all experiments in this study, where we recall that ρ is the mixture density,
gx = g sin α is the axial component of gravity, ho is the initial film thickness, umax is
the maximum observed velocity, and ηso

is here the dimensional effective viscosity
of a suspension with a particle concentration equal to φB. The effective viscosity is
modelled by the empirical form

ηs(φ) = η0

(
1 − φ

φmax

)−2

,

where η0 is the suspending liquid viscosity, and the maximum packing fraction is
taken as φmax = 0.65. The particle-scale Reynolds number is much smaller,

Rep =
ργ̇ a2

η0

< 10−5,

where a is the particle radius, and the representative shear rate is given by the film
average value of γ̇ = umax/ho.

As in prior experimental examinations of suspension flows with varying shear rate
(Leighton & Acrivos 1987; Abbott et al. 1991; Lyon & Leal 1998) and predicted by
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theoretical treatments (Phillips et al. 1992; Nott & Brady 1994; Morris & Boulay
1999) when applied to rectilinear flows, we observe the migration of particles away
from regions of high shear at the wall toward the low-shear-rate region closer to the
free surface. We are, however, unable to make precise statements about the solids
fraction close to the free surface based upon our results. We have also observed the
deformation of a free surface caused by particle interactions in the bulk (subsurface)
flow which has been previously observed by Loimer et al. (2002). Note that the
surfaces in the work of Loimer et al. had normal along the vorticity direction of a
band-driven simple shear, and thus the fluid adjacent to (just below) the free surface
was not shear stress free as in the case of the surfaces studied here. It is thus interesting
to note the relative similarity of the observations.

3.1. Particle velocimetry

In order to analyse the results and facilitate comparison between different experiments,
the coordinates are scaled with ho, taken as the film depth 15 cm downstream from
the introduction of suspension to the channel. All velocities reported here have been
scaled by U0; this is the surface velocity of a parabolic Newtonian flow having the
same depth and same axial flux as the suspension at the initial measurement location,
and varies over the range 0.5–3 mms−1 in the reported experiments. The scaled flows
presented for all conditions are thus equivalent on a dimensionless flux basis to that
of the reference parabolic flow. The actual velocities from the experiments can be
recovered from the scaled velocities plotted by using the values of U0 from table 1.
We note that only small (1–5 %) variations in axial flux, apparently resulting from
experimental uncertainty, were observed in integration of the profiles.

The velocity profile evolution is illustrated by figure 6, which shows the measured
velocities at the three measurement locations for suspensions of φB = 0.2, 0.3, and
0.4. Note that the measured velocity profiles at 15 cm are very nearly equivalent to
the parabolic form of a Newtonian fluid for φB = 0.2 and 0.3, while for φB = 0.4
the shear rate at the wall at this location is actually below the Newtonian result,
indicating that we are not able to observe significant influence of migration at this
point. We thus take ho from measurements at this location. As the fluid moves down
the inclined plane, the velocity at the measurement locations nearest the wall is
observed to increase, e.g. by a factor of about two for φB =0.2. The cases displayed
have films 2.3 <ho < 2.9 mm. While the angle of inclination differs for the φB = 0.3
case, results which follow below show this change in angle has little or no discernible
effect upon the scaled velocity profiles. In figure 6(b), the small change seen for
φB = 0.3 between the profiles measured at x = 76 cm and x = 137 cm indicates nearly
full development for this volume fraction, although without the ability to take data
further downstream (the device being too short to allow this) we cannot say this
with certainty. The essentially negligible differences for φB = 0.4 at these locations
indicate fairly certainly that the final measurements for this solids fraction are fully
developed. Significant difference is seen between these axial locations for φB = 0.2,
and thus this condition is probably not fully developed at the final station. The
modelling described in § 4 predicts that the velocity profile for φB = 0.2 at x = 137 cm
(x/ho

.
= 520 in experiment 2) will not be fully developed, while the predictions for

φB = 0.3 and 0.4 suggest complete evolution before the final measurement location.
Figure 7 shows results from a number of experiments, all at x =137 cm from the

onset of flow. In part (a), although the φB = 0.2 flow may not be fully developed, the
scaled velocity profiles have generally similar form, with the suspensions invariably
shearing much more rapidly near the wall than the Newtonian fluid having the same
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Figure 6. Measured velocity at three axial locations is shown for (a) φB = 0.2, α = 33.5◦,
and ho = 2.6 mm; (b) φB = 0.3, α = 60.8◦, and ho =2.3 mm; and (c) φB = 0.4, α = 33.5◦, and
ho = 2.9 mm.

axial flux. Considering the detailed forms, the scaled velocities for φB = 0.3 and 0.4
are very similar. The profile for φB = 0.2 is closer in form to the parabolic flow of a
Newtonian fluid (shown for reference), although substantial influence of migration is
nonetheless evident. Specifically, migration away from the solid surface reduces the
effective viscosity in this portion of the flow, and thus results in more rapid shearing
near the wall and blunting of the velocity away from the solid surface. There is a
consequent reduction in the film thickness to satisfy the mass flux requirement, as the
higher velocities caused by more rapid shearing at the wall integrate to the imposed
flux over a thinner film. Figure 7(b) shows that the depth of the film has little impact
upon the scaled form of the velocities just measured, and figure 7(c, d) together show
that this is true also of the angle. This agrees with expectations derived from Stokes
suspension flow in channels, in that the evolution of the flow depends primarily upon
the strain undergone by the material rather than the rate of strain.

The large velocity gradient near the wall, shown in figures 6 and 7, implies that the
particle concentration near the wall has become nearly zero in the fully developed



324 B. D. Timberlake and J. F. Morris

(a) (b)

(d)

0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1.0

1.0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1.0

1.0

0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1.0

1.00.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1.0

1.0

ho = 2.31 mm
2.72 mm
3.21 mm

(c)

φB= 0.20

0.30

0.40

α = 33.5°
60.8°

α = 60.8°
73.4°

z/ho z/ho

vx––
U0

vx––
U0

Figure 7. Comparison of velocity profiles normalized to the same axial flux, measured at
x = 137 cm for various conditions: (a) φB = 0.2, 0.3, and 0.4 for α = 33.5◦, and ho = 2.64 mm,
ho = 2.31 mm, and ho = 2.89 mm respectively; (b) varying ho for φB = 0.3, and α = 60.8◦; and
varying α for φB = 0.3 for (c) ho = 2.3 mm and (d) ho ≈ 3.3 mm. The heavy line in each case
represents the Newtonian fluid parabolic profile of the same axial flux.

state. Note that in channel flow experiments, Lyon & Leal (1998) also saw a sharp
decrease in φ at the walls, as did Nott & Brady (1994) in simulations of this flow.

Results for all experiments for which film depth was measured are presented in
table 1. All experiments involving concentrated suspensions resulted in downstream
velocity profiles which exhibited an increase in the velocity gradient near the wall.
Implied viscosities determined from a two-layer Newtonian viscosity model and
implied particle fractions are presented. Implied particle fractions were determined
by solving for φ from the empirical effective viscosity relation noted previously,

ηsi
= η0

(
1 − φ

φmax

)−2

,

where ηsi
with i = 1 or 2 is a layer viscosity from the two-layer Newtonian viscosity

model, η0 is the pure fluid viscosity, and φmax = 0.65. Particle flux matching from the
two-layer model to the experimentally set value was within 15 % in all cases. This
seemingly large uncertainty is due to uncertainty in the location of the boundary
between layers within the two-layer model.
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α Q x h U0 ηs1 ηs2 η0

Exp. φB deg. mLmin−1 cm mm mm s−1 Pa s Pa s β φ1 φ2 Pa s

1 0 33.5 13.39 76 2.68 2.74 8.0 8.1 0.88 ± 0.07 0.00 0.00 8.1

2 0.2 33.5 13.39 15 2.64 2.71 7.7 8.1 0.54 ± 0.08 0.19 0.20 3.9
76 2.44 4.8 8.4 0.83 ± 0.08 0.07 0.21
76 2.44 4.6 8.2 0.86 ± 0.08 0.05 0.20

137 2.26 3.3 9.6 0.81 ± 0.09 0.00 0.24

3 0.3 33.5 5.68 15 2.31 1.29 12.1 15.6 0.57 ± 0.09 0.29 0.33 3.7
76 1.89 5.1 16.0 0.76 ± 0.11 0.09 0.34

137 1.78 3.7 19.1 0.78 ± 0.11 0.00 0.36

4 0.3 60.8 5.68 15 2.31 1.34 18.0 19.9 0.86 ± 0.09 0.29 0.31 5.6
76 1.97 8.2 20.7 0.79 ± 0.10 0.11 0.31

137 1.88 6.9 20.8 0.79 ± 0.11 0.06 0.31

5 0.3 60.8 9.52 15 2.72 1.87 20.0 17.5 0.63 ± 0.08 0.31 0.28 5.6
76 2.34 8.5 20.5 0.83 ± 0.09 0.13 0.31

137 2.14 6.2 17.9 0.83 ± 0.10 0.04 0.29

6 0.3 60.8 14.30 15 3.21 2.43 21.3 19.4 0.60 ± 0.06 0.30 0.29 6.0
76 2.80 8.5 25.0 0.83 ± 0.07 0.10 0.33

137 2.74 7.8 25.8 0.82 ± 0.08 0.08 0.34

7 0.3 73.4 17.61 15 3.33 2.95 19.5 20.6 0.90 ± 0.06 0.29 0.30 5.9
137 2.69 6.7 21.5 0.82 ± 0.08 0.04 0.31

8 0.4 33.5 2.78 15 2.89 0.53 45.5 48.3 0.94 ± 0.06 0.40 0.41 6.5
76 2.28 8.3 73.1 0.90 ± 0.09 0.08 0.46

137 2.26 7.6 72.2 0.91 ± 0.09 0.05 0.46

Table 1. Results from all velocimetry experiments discussed. Left to right in the first five
columns are the experiment number, bulk particle volume fraction, angle of inclination from
horizontal, the imposed volumetric flux, and axial position of the measurements. The film
depth determined is h, while the maximum (surface) velocity of the Newtonian film flow
(having flux Q and the viscosity of uniform suspension at φB) is labelled U0. The parameters
ηs1

, ηs2
and β are the results of a fit of the experimental results to the two-layer Newtonian

viscosity model, where 1 refers to the region closest to the solid surface and the variable β
(with associated uncertainty) is the fraction of the total film which is made up of the layer next
to the free surface. The particle fractions implied by the viscosities found from the two-layer
Newtonian viscosity model are given as φ1 and φ2. The pure liquid viscosity determined as
described in the text is given by η0 in the rightmost column; variation is due to changes in
laboratory temperature from day to day. Units of dimensional quantities are indicated in the
second line of the top row. The particle radii range from 125 to 150 µm in these experiments.

It is not possible to determine the particle concentration at the free surface precisely
from the data obtained here. Due to the relatively small shear stress near the free
surface, changes in the effective viscosity at the free surface will result in a very small
change in the velocity. Only extremely accurate velocity measurements over the entire
film would allow reliable determination of near-surface particle fraction from the
velocity profile.

A consideration of the limiting case of the flow down a vertical plane is of some
interest. Experiments were done for φB =0.3 and α =90◦, but were qualitatively
different in behaviour from those at smaller α. For smaller angles of inclination relative
to the horizontal a film of very uniform depth in the spanwise direction was obtained,
while the film was not uniform in depth at α =90◦. In this case of a vertical channel,
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most of the flow occurred in the corners between the bottom of the channel and the
sidewalls with almost no suspension in the centre of the channel. This behaviour was
repeatable and stable to forced disturbances of the free surface. In fact, the flow in the
corners is to be expected as shown in the study of film flows in the geometry of the
present study by Scholle & Aksel (2003), because our film depth becomes small relative
to the capillary length defined lc = (2σ/ρg cos α)1/2 in the vertical condition (lc diverges
as α → 90◦) and Scholle & Aksel have shown that the flow is predominately in the
corners under this condition. For α = 30◦–70◦ for the other experiments described,
we note that ho/lc = O(1), and there is minimal influence of the corner flow on the
results. Velocimetry measurements were not made for the vertical plane condition.

The film depths, h(x), reported in this study were determined by integrating the
particle velocity to find the point where the total material flux was equal to the total
flux which was physically set in the experiment. There was close agreement, generally
within 100 µm, between this and the depth determined by a depth micrometer. We are
unable to determine the film depth by integration for the φB = 0.3, α = 90◦ experiment,
since our method requires negligible variations in the film thickness in the spanwise
direction.

Because of temperature variations, precise reproduction of film thickness proved
difficult, and hence results of exact replicates of experiments are not reported.
However, the reproducibility of the stereoscopic imaging and velocimetry technique
employed in this study is demonstrated in figure 6(a). Two independent camera
positionings (setups 1 and 2), with images taken over two different time intervals,
were used during the course of a single experiment to measure the velocity profile at
x = 76 cm (x/ho

.
= 290 for this experiment). Close agreement between the measured

velocity profiles in the two intervals is seen. The largest difference in the two trials
was 0.08 mm s−1, or ≈ 3 % of the maximum velocity of 2.85 mm s−1. This supports
the significance of the difference in the velocity profiles measured at x = 15 cm and
x = 137 cm from these results. In regard to the reliability of the measurements, note
also that the velocities reported in figure 6(c), from experiment 8 at φB =0.4, are
within the experimental accuracy identical at x =76 and 137 cm; this indicates not
only that this flow was fully developed at the first of these two axial positions, but
also that the imaging and velocimetry technique is reliable.

3.2. Surface imaging

The surface deformation of a flowing suspension has been characterized by the
method described in § 2.3. The deformation was studied for experiments in the long
channel along with the velocimetry measurements in limited cases, although the great
majority were performed in the short channel. Results presented are primarily from
these ‘initial flow’ studies, in which a volume of suspension calculated to produce
a film of the desired depth was poured into the short channel in the horizontal
position. The suspension was introduced as uniformly as possible to minimize flow
during the levelling period. Following this levelling period, the channel was tilted
to the inclination angle of interest and images of the surface were captured, with
the suspension undergoing a total mean strain of less than 10 (umaxt/ho < 10). Only
figure 13 presents results of surface deformation following significant axial flow,
with measurements taken at the positions for which velocimetry was performed. The
experiments examining the free surface of a uniformly concentrated suspension are
summarized in table 2, including a description of the surface observed under our
standard magnification.
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α a h Surface
Exp. φB deg. µm mm Cap h/(2a) Caf Description

1 0.30 34.5 5.0 2.413 1.0 × 10−5 243.7 2.4 × 10−3 smooth
2 0.30 34.5 5.0 3.073 1.0 × 10−5 310.4 3.0 × 10−3 smooth
3 0.30 0.16 89 1.854 1.2 × 10−5 11.7 1.4 × 10−4 smooth
4 0.30 75.6 5.0 2.413 1.6 × 10−5 243.7 4.0 × 10−3 smooth
5 0.30 0.48 89 1.854 3.7 × 10−5 11.7 4.3 × 10−4 smooth
6 0.30 0.97 89 1.854 7.4 × 10−5 11.7 8.7 × 10−4 smooth
7 0.30 1.94 89 1.854 1.4 × 10−4 11.7 1.7 × 10−3 deformed
8 0.30 2.86 89 1.854 2.1 × 10−4 11.7 2.6 × 10−3 deformed
9 0.30 7.30 89 1.854 5.5 × 10−4 11.7 6.5 × 10−3 deformed

10 0.30 7.30 89 13.37 5.5 × 10−4 84.1 4.7 × 10−2 deformed
11 0.01 34.6 89 1.981 2.5 × 10−3 12.5 3.1 × 10−2 deformed
12 0.05 34.6 89 2.108 2.5 × 10−3 13.3 3.3 × 10−2 deformed
13 0.10 34.6 89 2.032 2.5 × 10−3 12.8 3.2 × 10−2 deformed
14 0.20 34.5 89 2.337 2.5 × 10−3 14.7 3.7 × 10−2 deformed
15 0.20 34.5 89 3.200 2.5 × 10−3 20.1 5.0 × 10−2 deformed
16 0.20 34.5 89 4.039 2.5 × 10−3 25.4 6.3 × 10−2 deformed
17 0.30 34.5 89 2.134 2.5 × 10−3 13.4 3.3 × 10−2 deformed
18 0.30 34.6 89 2.210 2.5 × 10−3 13.9 3.5 × 10−2 deformed
19 0.30 34.5 89 3.099 2.5 × 10−3 19.5 4.9 × 10−2 deformed
20 0.30 34.5 89 3.912 2.5 × 10−3 24.6 6.1 × 10−2 deformed
21 0.30 34.5 89 5.334 2.5 × 10−3 33.5 8.4 × 10−2 deformed
22 0.40 34.5 89 2.083 2.5 × 10−3 13.1 3.3 × 10−2 deformed
23 0.40 34.5 89 3.048 2.5 × 10−3 19.2 4.8 × 10−2 deformed
24 0.40 34.5 89 4.191 2.5 × 10−3 26.4 6.6 × 10−2 deformed
25 0.20 60.8 89 2.108 3.8 × 10−3 13.3 5.1 × 10−2 deformed
26 0.20 60.8 89 3.124 3.8 × 10−3 19.6 7.5 × 10−2 deformed
27 0.20 60.8 89 3.785 3.8 × 10−3 23.8 9.1 × 10−2 deformed
28 0.30 60.8 89 2.134 3.8 × 10−3 13.4 5.2 × 10−2 deformed
29 0.30 60.8 89 3.048 3.8 × 10−3 19.2 7.4 × 10−2 deformed
30 0.30 60.8 89 4.039 3.8 × 10−3 25.4 9.8 × 10−2 deformed
31 0.30 60.8 89 5.969 3.8 × 10−3 37.5 1.4 × 10−1 deformed
32 0.40 60.8 89 2.057 3.8 × 10−3 12.9 5.0 × 10−2 deformed
33 0.40 60.8 89 3.124 3.8 × 10−3 19.6 7.5 × 10−2 deformed
34 0.40 60.8 89 4.597 3.8 × 10−3 28.9 1.1 × 10−1 deformed
35 0.20 75.0 89 1.854 4.2 × 10−3 11.7 5.0 × 10−2 deformed
36 0.20 75.0 89 2.869 4.2 × 10−3 18.0 7.7 × 10−2 deformed
37 0.20 75.0 89 4.293 4.2 × 10−3 27.0 1.2 × 10−1 deformed
38 0.40 75.0 89 1.823 4.2 × 10−3 11.5 4.9 × 10−2 deformed
39 0.40 75.0 89 3.124 4.2 × 10−3 19.6 8.3 × 10−2 deformed
40 0.40 75.0 89 4.318 4.2 × 10−3 27.2 1.2 × 10−1 deformed
41 0.40 90.0 89 2.083 4.4 × 10−3 13.1 5.8 × 10−2 deformed
42 0.40 90.0 89 3.073 4.4 × 10−3 19.3 8.5 × 10−2 deformed

Table 2. Free-surface characteristics and parameters for all of the uniformly concentrated (or
‘initial’) free-surface film experiments. The particle size is reported here as the mean radius, ā.
The final column indicates whether the image of 2.4 cm × 3 cm showed discernible deformation.

The deformation at the interface reflects a balance between surface tension and
viscous stresses, commonly given by a capillary number. Two capillary numbers were
considered, the first based on the shear stress averaged over the depth of the film,

Caf =
ρgxha

σ
,
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(a) (b)

Figure 8. Comparison of initial surface topography for films at uniform φ = 0.3. (a) ā = 89 µm,
Caf =2.56 × 10−3, and Cap = 2.19 × 10−4. (b) ā = 5.0 µm, Caf = 4.02 × 10−3, and Cap =1.65 ×
10−5. Images are 2.4 cm in width and 3.0 cm in height. The suspension is flowing from top to
bottom.

and the second based on the stress at a distance comparable to the particle diameter
from the free surface,

Cap =
2ρgxa

2

σ
,

where σ is the measured surface tension. The former definition, differing by a factor
of 1/2, was used to characterize conditions in computed liquid film flows containing
either immiscible liquid drops or rigid particles by Li & Pozrikidis (2002 or 2003,
respectively) under fairly dilute conditions. In concentrated suspensions, comparison
of surface images indicates that Cap provides a better delineation of behaviour than
does Caf . Experiments conducted at the same bulk solid fraction and same Caf but
with suspensions of different particle size display different surface topography, as
shown in figure 8 for suspensions of φB = 0.3; in part (a) the suspension is of mean
particle radius ā = 89 µm, while in (b) ā =5.0 µm. Despite the larger Caf in (b), the
surface shows none of the deformation which is observed in part (a), and this was
confirmed to be true even at a much higher magnification level for the small-particle
suspension. At Cap = 2.2 × 10−4 in figure 8(a), the surface is deformed by subsurface
particles (or groups of particles) while the surface in (b), at Cap = 1.7 × 10−5, is not
noticeably deformed. In general, we find there is a discernible change in surface
topography for φB = 0.3 at Cap ≈ 10−4.

The relevance of the stress at particle-scale distances from the surface, which is
captured by Cap , rather than the stress proportional to film depth captured by Caf , is
also supported by PSD results. Experiments run at the same φB and inclination angle
at varying ho vary little in wavenumber content of either one- or two-dimensional
PSDs, with the former presented in figure 9 for φB =0.3 and α =34.6◦.

Dependence of the surface topography on inclination angle (and hence shear
stress) and solids fraction is illustrated by figures 10–12. In figure 10, surface images
are presented. In the upper group of images (a–e), φB is fixed at 0.3 in a film of
h =2 mm (the particle mean radius is 89 µm) and α takes values 0.16◦, 2.86◦, 7.30◦,
34.6◦, and 60.8◦. The film is not perceptibly deformed at the smallest angle, but
is weakly deformed by α = 2.86◦ and becomes progressively more deformed until
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Figure 9. Effect of changing film thickness, ho, on the one-dimensional power spectral densi-
ties from surfaces of uniformly concentrated films for ā = 89 µm, φB = 0.3, and α = 34.6◦, in
(a) spanwise direction and (b) streamwise direction. These experiments have Cap = 2.5 × 10−3

and Caf = 3.5 × 10−2 – 8.4 × 10−2.

α = 34.6◦. There is little change in the deformation when the angle is increased to
α = 60.8◦. In figure 11(a–e), the two-dimensional PSDs corresponding to figure 10(a–e)
show increasing high wavenumber content as α increases, and figure 12 illustrates
that the PSD at all but the lowest wavenumbers (which are not presented on
the figure) is shifted upward as the surface is progressively inclined. In (f –j ) of
figures 10 and 11, the surface images and two-dimensional PSD are presented for
fixed α = 34.6◦ and φB = 0.01, 0.1, 0.2, 0.3, and 0.4, respectively. Even at the dilute
condition of φB = 0.01, surface deformation is visually recognizable, and the PSD
shows this deformation to be on a range of scales. As φB increases, the intensity of
the deformation, as well as the relative content in large wavenumbers, is observed
to increase. Differences in the surfaces for conditions of φB � 0.2 are not readily
described, but the PSD representation does show differences. Note that in all cases
with significant deformation of the interface, the two-dimensional PSD plots show
some anisotropy, with larger wavenumbers populated in the flow direction than in
the spanwise direction. This may be suggestive of wave formation, but no obvious
wave structure is seen; note that the inclined-plane Stokes flow of a thin film of pure
liquid should be stable to interfacial waves at α < 90◦.

The effect of the particle concentration on the surface topography can be seen in
figure 10. As the particle fraction increases the surface becomes more deformed, and
the relative high-wavenumber content of the surface increases as shown in figure 11.

Recall that the flow develops axially owing to particle migration. It is thus interesting
to know the axial dependence of surface topography. While generally similar surface
features are seen, a comparison based on the two-dimensional power spectral densities
of figure 13 from x → 0, 76 cm, and 137 cm shows differences, the most notable being
the appearance of more distinct boundaries between levels in the power at the two
downstream locations, and a flattening of the spectrum between the second and third
locations, the latter evidenced by the reduction in the range of the power represented
in figure 13(c).

Low-pass filtering has also been applied to the individual surface images in an
attempt to determine the scale of structures within the film resulting in the deformation
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Figure 10. Surface images from uniformly concentrated flowing films. Upper row, varying α with ā = 89 µm, φB = 0.3 and h ≈ 2 mm. (a) α = 0.16◦,
(b) α = 2.86◦ (c), α = 7.30◦ (d), α = 34.6◦, and (e) α =60.8◦. Lower row, varying φB with ā =89 µm, α = 34.6◦ and h ≈ 2.0 mm. (f ) φB = 0.01,
(g) φB = 0.1, (h) φB =0.2, (i) φB =0.3, and (j ) φB = 0.4. Images are 2.4 cm wide and 3.0 cm tall. Flow is from the top to bottom in each image.
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Figure 11. Two-dimensional power spectral density for conditions corresponding to figure 10. Upper row, varying α, with ā = 89 µm, φB =0.3 and
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Figure 12. One-dimensional power spectral density from surfaces of uniformly concentrated
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and (b) downstream direction.
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Figure 13. Two-dimensional power spectral density for different axial locations, with 2ā =
89 µm, φB = 0.3, α = 60.8◦, and ho = 2.1 mm. (a) Initial surface, x → 0, (b) x = 76 cm, and
(c) x = 137 cm. The values plotted are log10 of the power. A mapping to grey scale is shown in
the bar.

of the interface. Low-pass filtering was done with cutoff wavenumbers (wavelengths, λ)
of 1.2 mm−1 (λ= 5.3mm), 2.6 mm−1 (λ= 2.4 mm), 4.2 mm−1 (λ= 1.5mm), 12.6 mm−1

(λ= 0.5 mm), and 20.9 mm−1 (λ= 0.3 mm), where all wavenumbers which were larger
than these were discarded. Examples of these filtered images can be seen in figure 14.
When the filtered images are viewed in video form (as a time series), structures
associated with all wavenumbers are observed to move downstream.

4. Flow modelling
Gravity-driven Stokes flow of a film of Newtonian fluid down an inclined plane

results in a quadratic velocity profile. The standard assumption of vanishing shear
stress at the gas–liquid interface, or free surface, results in a flow mathematically
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(a) (b) (c)

(d) (e) ( f )

Figure 14. Filtered surface images from a uniformly concentrated film, with ā = 89 µm,
φB = 0.3, α = 60.8◦, and ho = 2.1 mm: (a) Original image; (b) largest wavenumber of 20.9mm−1

(λ= 0.3 mm), (c) 12.6 mm−1 (λ= 0.5 mm), (d) 4.2 mm−1 (λ= 1.5 mm), (e) 2.6 mm−1 (λ=2.4 mm),
and (f ) 1.2mm−1 (λ=5.3mm). Images are 2.4 cm wide and 3.0 cm tall. Flow is from the op
of the each image toward the bottom.

identical to pressure-driven channel, or plane Poiseuille, flow with the gravitational
driving force replacing the gradient of pressure, of form u(ξ ) = Us[1− (ξ/h)2] where ξ

is measured from the free surface into the liquid (ξ = h − z), Us is the surface velocity
and h is the film depth. Suspensions of neutrally buoyant particles in pressure-driven
channel flow exhibit shear-induced migration, with elevated concentration developing
in the centre of the channel as the flow proceeds axially. It is thus natural to apply
modelling successful for predicting migration phenomena in pressure-driven and other
flows to the study of gravity-driven suspension film flow. The model we use is based
on the suspension balance approach of Nott & Brady (1994) with the different
description of the normal stress rheology proposed in Morris & Boulay (1999).

The new features considered here are the potential for a normal stress jump across
the free surface and the free-boundary character of the upper surface of the film.
The latter allows the mean film depth to vary as the mixture flows axially, and thus
provides the capability to match the experimentally observed thinning of the film, as
shown by the h(x) data in table 1. The mean free surface is nearly flat, and thus takes
on too weak a curvature to be of significant influence under the conditions studied,
but the possibility for a normal stress jump resulting from the smaller-scale fluctuating
deformations of the free surface of the suspension is addressed below.

We consider flows in which the film-scale inertia and the particle-scale inertia are
small, justifying neglect of inertia at all scales. In the suspension balance approach,
neutrally buoyant suspension flow at zero Reynolds number is described by mass and
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momentum conservation equations for the bulk mixture and for the particle phase.
The bulk balances are

∇ · 〈u〉 = 0 and ∇ · Σ + ρg = 0, (4.1)

with the mean suspension velocity and bulk stress given by 〈u〉 and Σ , respectively.
Particle mass conservation is described by

∂φ

∂t
+ 〈u〉 · ∇φ = −∇ · j , (4.2)

in which j ≡ φ(U − 〈u〉) is the particle flux relative to the mean motion, with U the
mean velocity of the particle phase, which is governed by

0 = ∇ · Σp − 9η0

2a2
φf −1(φ)(U − 〈u〉), (4.3)

for neutrally buoyant particles; it was shown in Morris & Brady (1998) that only the
difference in density ρp − ρf enters this equation. The last term on the right of (4.3)
represents the hydrodynamic force on the particle phase due to its motion relative to
the bulk average velocity, and thus is represented as analogous to a sedimentation
with f the sedimentation hindrance function. The particle contribution to the bulk
stress, Σp , is modelled as

Σp = −η0γ̇Q(φ) + 2η0ηp(φ)E, (4.4)

where ηp is the dimensionless particle contribution to the suspension viscosity, and
E is the local bulk rate of strain, γ̇ = (2E : E)1/2. The normal stresses are specified by
the dimensionless material property tensor Q, which is taken to be

Q(φ) = ηn(φ)


 1 0 0

0 λ2 0
0 0 λ3


 ≡ ηn(φ)Q̂, (4.5)

where ηn(φ) is termed the ‘normal stress viscosity’. The sedimentation hindrance
function, f , relates the sedimentation rate of a homogeneous suspension of spheres at
volume fraction φ to the isolated Stokes settling velocity, i.e., f (φ) = Used(φ)/Used(0). A
standard form, f (φ) = (1−φ)α , is used here (Richardson & Zaki 1954) with α = 4. The
anisotropy of the stress is given by λ2,3 differing from unity, with values of λ2 = 0.5
and λ3 = 0.8 providing best fits of various suspension flows. It is important to note
that the vorticity direction is in the 2 position and the gradient in the 3 position, which
is unusual (and differs from the original work). Here, we are interested only in the
z-directed normal stress but have provided the full constitutive behaviour described
by Morris & Boulay (1999) for completeness. Particle contributions to shear and
normal stress were treated empirically as

ηp = 2.5η0

φ

φmax

(
1 − φ

φmax

)−1

+ Ksη0

(
φ

φmax

)2 (
1 − φ

φmax

)−2

, (4.6)

ηn = Knη0

(
φ

φmax

)2 (
1 − φ

φmax

)−2

, (4.7)

where Ks = 0.1 and Kn = 0.75 provided reasonable agreement with experimental data.
The maximum packing fraction of φmax = 0.65 is slightly different than in Morris &
Boulay.
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The problem studied is steady in average but axially varying, and variations of
stresses in the axial direction are much smaller than those across the channel. These
features reduce the governing equation for φ(x, z) to

〈ux〉 ∂φ

∂x
= −∂jz

∂z
= −2a2

9η0

∂

∂z

(
f (φ)

∂ΣP
zz

∂z

)
(4.8)

in which it is assumed that the average mixture velocity has only an axial component in
writing the left-hand side. Note that z in this problem is the direction of the velocity
variation, or the gradient direction, and thus ΣP

zz = ΣP
33. The boundary conditions

associated with (4.8) are that no particle flux occurs through either the solid boundary
or the free surface; we require constant axial flux of both particles and bulk suspension
at any value of x, which condition is related to the determination of the free-surface
position (i.e. to the value of h(x)).

We assume that the particles move with the mean suspension velocity in the axial
direction, neglecting the lag velocity of O[(a/h)2] predicted by Faxén’s law. The
solution is obtained using a marching method described by Miller & Morris (2003),
such that the axial momentum equation uses only local information, meaning values
at the axial position x of interest,

0 = ρg sin α +
∂

∂z

(
ηs(φ)

∂ux

∂z

)
(4.9)

and from this we determine ux and γ̇ = ∂ux/∂z. This information, along with the
profile φ(z) at this x, is used to evaluate ΣP

zz and its variation with z, and hence
the cross-stream particle flux due to particle migration, jz. This leads to an updated
equation for φ which, following from (4.8), yields

�φ = − �x

ux(z)

∂jz

∂z
= − 2a2 �x

9η0 ux(z)

∂

∂z

(
f

∂ΣP
zz

∂z

)
. (4.10)

In order to apply the model to the film flow, a boundary condition for the free
surface must be developed. Considering the local conditions at a free surface, a
normal stress jump is admitted across the interface, and a finite normal stress at the
interface is needed for a fully developed solution satisfying the condition ∂ΣP

zz/∂z =0
to apply, given the rheological model of the mixture; this is similar to the need for a
finite normal stress at the centreline of fully developed pressure-driven flow captured
in different ways in Nott & Brady (1994) and Frank et al. (2003). Despite the necessity
of some normal stress at the interface owing to this ‘solvability condition’ for the
flow, this jump has little effect aside from keeping the free-surface value of φ below
maximum packing until it is made comparable to the mean film shear stress. The
normal stress jump at the free surface is set as follows:

ΣP
zz = ΣP

zz(o) − Cη0ηn

ux

h

where ηn is the normal stress viscosity at the local value of φ, and ΣP
zz(o) ∼ −ηnγ̇ is the

locally calculated particle stress and thus vanishes at the free surface, where γ̇ = 0. The
second term on the right of the above expression is thus the non-local portion of the
particle stress, which causes a normal stress jump at the free surface. The parameter
C was varied from 0.001 to 10, with values of C = (0.001, 0.01, 0.1, 1, 2, 10) yielding
h/ho =(0.842, 0.847, 0.852, 0.903, 0.980, 0.997), respectively: migration is significantly
reduced only for values of C � 1, with little difference in the velocity and concentration
profiles for C =0.001 to 0.1. The fully developed dimensionless film thickness is closest
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Figure 15. (a) Comparison of dimensionless velocity profiles determined experimentally at
x = 137 cm with the fully developed model velocity profiles. Comparison of model predictions
of film thickness and experimentally determined film thickness for (b) φB = 0.2 and 0.4, and
(c) φB = 0.3. The experimental data for φB = 0.2, 0.3, and 0.4 were taken from Experiments 2,
3 and 8, respectively, as labelled in table 1. The model parameter value of C = 0.1 is used. The
legend in (a) applies also to (b).

to the experimentally determined result for values of C � 0.1, and further modelling
predictions presented use C = 0.1.

Model predictions for velocity and film depth are compared with the experimental
observations for φB = 0.2, 0.3, and 0.4 in figure 15. The observed shear rate at the wall
is large relative to the predictions. The model does not predict that φ will approach
zero at the wall, as observed in the experiments. The predictions of the evolving film
depth are in reasonable agreement with the model predictions for the two higher
solids fractions, but for φB = 0.2 the experimental evolution is both more rapid and
more extreme (the predicted asymptote for φB = 0.2 is h/ho

.
= 0.89 and the observed

value h/ho at the last measurement location is below this value). The discrepancy
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Figure 16. Model solutions for various φB with C = 0.1: (a) φ profile, (b) velocity profiles, and
(c) evolution of h/ho. The fully developed states based on h/ho for φB = 0.1 and 0.2 occurs at
x/ho ≈ 10 000 and 2800, respectively, and curves for these conditions are omitted from (c).

appears to be related again to the model failure to predict the rapid drop of φ toward
zero adjacent to the solid boundary.

To give a more complete view of the model for a range of conditions, velocity
and concentration profiles and the axial evolution predicted for 0.1 � φB � 0.5 are
presented in figure 16. The scaled film depth is predicted to decrease and the scaled
surface velocity to increase with increasing φ. The model predictions of the axial
evolution of h/ho for different φB are presented in figure 16(c), and are of interest
for interpretation of the experimental results. The predictions for φB =0.1 and 0.2 are
that the depth continues to decrease slowly until x/ho = 10 000 and 2800, respectively,
and are omitted from the plot. This long development length for φB = 0.2 suggests
strongly that the flow experiment 2, as labelled in table 1, is not fully developed,
although the discrepancy between model and experiment noted just above should
also be borne in mind.

5. Discussion and conclusions
Experiments from this study have shown that particle migration in gravity-driven

suspension film flow occurs under a range of conditions, and that the shear-stress-free
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surface of the film becomes deformed over a range of scales. The conditions studied
were highly viscous, as Ref  1. In general, the films studied were relatively thin in the
sense that they are of O(10) particle diameters in depth. Velocity profiles determined
by stereoscopic imaging and particle correlation velocimetry have shown, for all
suspensions of φB � 0.2 studied, a decrease in effective viscosity of the material nearest
the wall as the suspension moves down the inclined plane, implying a reduction in
φ here. The added shear rate due to this migration away from the wall causes the
velocity near the wall to increase above its value for the uniform suspension. The
mean flow is observed to be steady and this increased shear rate leads to a decrease in
film thickness to maintain constant material flux. These results agree with predictions
from the suspension balance model in the form proposed by Morris & Boulay (1999).

There is insufficient information from our experiments to make conclusive
statements about the particle concentration next to the free surface, but the
comparisons of experiment and model results lead us to believe the model overpredicts
φ adjacent to the interface. The model has not included a mechanistic description of
the influence of the interface, although a non-local stress contribution has been used to
provide a finite normal stress jump across the position of the mean interface. That the
interface, despite being essentially flat in the mean, could provide a balancing stress to
a finite particle normal stress is quite reasonable, as it becomes highly deformed, i.e.
the root mean square curvature is certainly non-zero. As argued in Loimer et al. (2002),
who observed such deformations at the upper surface (in the vorticity direction) of a
simple shear flow driven by vertical belts, such deformations may result in a net force
upon the particle phase. It is worthwhile to note in considering such a possibility
that for such a situation to hold in a steady state, if the particles are pushed into the
film, the liquid must be subjected to the opposite force and would be pulled into the
vicinity of the interface.

What is suggested above is that the film interface serves to balance the driving
force for migration of the particle phase predicted by model and expected based
on the similarity of the flow with the well-studied pressure-driven channel flow.
There is further support from simulation of two-dimensional gravity-driven film flow
containing drops and particles by Li & Pozrikidis (2002, 2003). These boundary-
integral technique calculations show that in this flow, a single rigid particle is driven
away from the free surface as a result of the particle-induced flow causing a nonlinear
interaction in deforming the free surface; the work further shows that there is a
noticable depletion of drops, present at a bulk areal fraction of 0.2, adjacent to
the interface. Detailed comparisons of our results with this work are not readily
performed as velocity data are not presented.

Boundary conditions are needed to complete any analysis of a flow, and the
same is true of mixture flows. Suspension flows have been intensively modelled, but
the boundary conditions remain somewhat less well-understood than the migration
phenomena which have in many cases motivated the modelling studies. The capacity
of the interface to discriminate between phases illustrated here and in the numerical
work noted just above leads us to conclude that this problem must be taken up
by techniques employed in mixture flow analysis, wherein an ensemble averaging
technique is applied. It is expected that simulation could aid in such developments.

The gravity-driven suspension film flow differs quite significantly from its Newtonian
counterpart because of migration effects and surface deformation, and also from the
seemingly similar pressure-driven flow of a suspension in a rectangular channel. While
the latter flow is an imperfect analogue, the expectations of migration and surface
deformation due to suspension normal stresses derived from consideration of this
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flow certainly hold. We may safely conclude from our study that suspension normal
stresses are finite even at a boundary where the shear stress vanishes. This supports
the concept of non-local normal stress modelling which has been proposed for such
flows, using the suspension temperature modelling (Nott & Brady 1994; Morris &
Brady 1998) or simpler approaches not requiring an additional field variable as in the
model employed here (Morris & Boulay 1999). The proper form of these non-local
stresses remains, however, an open question.

The assistance of Professor Victor Breedveld in developing the particle velocimetry
was very helpful. This work was supported in part by the National Science Foundation
(CTS 982077) and in part by the donors of the Petroleum Research Fund, administered
by the American Chemical Society.

Appendix. Stereoscopic image analysis
The transformation from the captured two-dimensional image to a position in

three-dimensional space employed in the stereoscopic particle positioning outlined
in § 2.2 is described here. The x- and y-coordinates in physical space are defined
by the three points which lie in the plane, and in practice were always oriented
such that the positive x-coordinate corresponds to the long axis of the channel (the
mean flow direction) and the y-coordinate corresponds to the spanwise direction. The
z-coordinate is defined using the out-of-plane point, and is zero at the solid surface
and positive above it.

The lens system used consisted of a series of thin lenses. It can thus be assumed
that all of the vectors going to the camera are parallel, as verified experimentally
after the fact as described in § 2.2. Because the vectors are essentially parallel, we are
able to develop a linear transformation between the location at which each vector
intersects the z = 0 plane in three-space and the two-dimensional coordinate system
of the image from the camera (Born & Wolf 1999). This transformation is of the
following form:

X = T · w + R, (A 1)

where X is a position where this particular vector intersects the (x, y)-plane (z = 0),
w is the position of the object in the image space taken by the camera, T is a two by
two matrix, and R is a vector of length two. Once the three points in the (x, y)-plane
have been located in the coordinate system of the image, the matrix T and the vector
R are then determined by solving (A 1), or more explicitly:

T = A · B (A 2)

R = −T · d1 − c1. (A 3)

Quantities in (A 2) and (A 3) are defined as follows: the columns of A are given by
c2 − c1 and c3 − c1 respectively, with ci a column vector denoting the location of
object i in the physical (x, y) plane; the columns of B are given by d2 − d1 and
d3 − d1 respectively, where d i is a column vector denoting the location of object
i in the image (V, W ) space, a subscript 1 denotes the object being used as the
physical space origin, and subscripts 2 and 3 denote the physical space objects which
define the x- and y-axes in physical space. The caption gives the image space and
corresponding physical space location of the points identified in figure 2. The three
points with a z position of 0.00 are used to determine T and R for this camera. The
image space coordinate system (V, W ) is defined with (0, 0) at the top left corner of
the picture and is illustrated in figure 2. It is necessary to determine the direction
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associated with the vectors from each camera. Under the approximation of parallel
vectors from the image to the camera, the direction in which the camera must be from
all objects which are observed can be determined from the identifiable point on the
optical standard which lies out of the (x, y, z =0) plane. This is the point located at
(V = 198, W =97) in the example of figure 2. The relation (A 1) is used to determine
the point where the vector from the out-of-plane point to the camera intersects the
(x, y, z = 0) plane. The direction in which the camera lies from all viewable objects is
defined by the difference between the actual position of the out-of-plane identifiable
point of the optical standard and the point determined from (A 1) above, given the
(V, W ) coordinates of the out-of-plane point.

The vector along which a point on an object lies is defined by the point at which
the ray of light intersects the (x, y, z = 0) plane, which is found using (A 1), and the
direction associated with the camera, found by the procedure outlined in the previous
paragraph. Recall that a vector to a point is determined for each camera, and a line
along the vector direction can be defined for each. The three-dimensional location
of an observed object is the point where the lines associated with that object from
the two cameras intersect. In practice, the object position is taken as the point which
minimizes the sum of the distances between itself and each vector. This point bisects
the shortest possible line between the two vectors.
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